

Amit Rand

(857)-998-9070 | amit.rand@ucla.edu | github.com/randamit123 | amitsite.vercel.app | Los Angeles, CA

EDUCATION

University of California, Los Angeles <i>B.S. in Computer Science and Applied Mathematics</i>	June 2026 <i>Los Angeles, CA</i>
Awards: Samueli Research Scholar, Research Scholar Spotlight, Research Travel Sponsorship, Dean's Honors	
Coursework: Data Structures & Algorithms, Software Construction, Operating Systems, Linear Algebra, Statistics & Probability, Real Analysis, Computer Vision, Reinforcement Learning*, Deep Learning*, Generative Models* (Graduate Coursework*)	

PUBLICATIONS

Diffusion-based k-space inpainting for improved 5D free-running CMR reconstruction	2026
• Coudert, T., Rand, A. , Gao, X., Zhenyang, M., Finn, J. P., Ruan, D., and Nguyen, K-L. <i>ISMRM-ISMRT Annual Meeting and Exhibition</i> , Cape Town, South Africa.	
Beyond Conventional Transformers: A Medical X-ray Attention Block for Improved Diagnosis	2025
• Rand, A. and Ibrahim, H. <i>NeurIPS 2025 Imageomics Workshop</i> , San Diego, CA. Link to Paper	

TECHNICAL SKILLS

Robotics & RL: SB3, OpenAI Gym, OpenCV, Reinforcement Learning, Robot Learning, Motion Planning, Manipulation
Deep Learning: PyTorch, Generative Models (Diffusion), Complex-Valued Networks, Weights & Biases, Retrieval Augmentation
Scientific Computing: NumPy, Pandas, Matplotlib, Seaborn, Pydantic, VTK/ITK/VMTK (Medical/Geometric Data)
Systems & Languages: Python, C/C++, Java, Bash, SQL, Linux, AWS (SageMaker, S3, EC2, Lambda), Docker, Git

RESEARCH EXPERIENCE

Undergraduate Researcher <i>Robotic Intelligence Lab, UCLA</i>	Sep 2025 – Present <i>Los Angeles, CA</i>
• Lead zero-shot imitation learning research using trajectory-based motion representations and learned embedding spaces to enable robot policy learning from human-guided sketch queries without direct demonstrations.	
• Architected a retrieval-augmented policy framework to condition robot behaviors on high-similarity demonstrations, significantly improving generalization across novel 2D sketch trajectories and video-based movement traces.	
• Preparing a first-author manuscript for 2026 on structure-grounded ML and motion planning for manipulation tasks, focusing on cross-modal modality alignment for "sketch-to-action" robotics applications.	
Undergraduate Researcher <i>Cardiovascular Imaging Research Lab, UCLA</i>	July 2024 – Present <i>Los Angeles, CA</i>
• Developing measurement-conditioned diffusion and flow-based generative models for k-space inpainting on multi-coil cardiovascular MRI, utilizing 3D spatiotemporal blocks and specialized CUDA projection layers.	
• Optimized complex-valued diffusion architectures with U-Net/Transformer backbones to ensure hard data consistency in 2D MRI reconstruction, achieving state-of-the-art interpolation fidelity and accuracy for globally predictable k-space data.	
• Co-authored physics-informed deep learning research under review at MICCAI and accepted to ISMRM, supported by the Samuel Research Scholarship and highlighted under Undergraduate Research Scholar Spotlight.	
Research Scientist Intern <i>AI/ML Research Accelerator (Graph AI Group), Leidos</i>	April 2025 – June 2025 <i>Santa Clara, CA</i>
• Investigated GNN embedding techniques to enhance feature clustering and decision-making in Reinforcement Learning environments, emulating dynamic graphs to optimize agent performance in non-stationary spaces.	
• Integrated RAG with supervised fine-tuning (SFT) to build enterprise-grade generative reasoning solutions for internal corporate upskilling, bridging the gap between structured graph data and stochastic RL policies.	

PROFESSIONAL EXPERIENCE

Software Development Engineer Intern <i>Amazon, Project Kuiper</i>	June 2025 – Sep 2025 <i>Redmond, WA</i>
• Delivered PyTorch models projected to reduce antenna calibration downtime by 20–30% across thousands of satellites.	
• Developed physics-aware transformers, reducing calibration time from 3 hours to mere inference via AWS SageMaker.	
• Architected automated AWS retraining pipelines to replace expensive thermal testing with high-fidelity surrogate simulation.	
GenAI Technical Advisor Intern <i>Scale AI</i>	Feb 2025 – May 2025 <i>Los Angeles, CA</i>
• Refined Chain-of-Thought (CoT) and fine-tuning methodologies for LLMs to optimize long-horizon reasoning performance.	
• Engineered terabyte-scale preprocessing pipelines, lifting model throughput by 70% via optimized feature engineering.	
Software Development Engineer Intern <i>Q.ai (Acquired by Apple for 2B, Backed by Google)</i>	Aug 2024 – Oct 2024 <i>Cupertino, CA</i>
• Deployed deep learning models and statistical EDA in Python to drive a 20% accuracy boost for proprietary systems.	
• Built real-time Dash/Plotly dashboards with SQLAlchemy ETL to monitor 10M+ files across 5 sites and 50 operators.	
• Optimized backend data ingestion and UX for core collection teams, ensuring high-quality integrity for model training.	